Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Colloids Surf B Biointerfaces ; 237: 113855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513298

RESUMO

Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.


Assuntos
Orelha Interna , Fibroínas , Perda Auditiva , Ácido Tióctico , Animais , Cobaias , Hidrogéis/química , Ácido Tióctico/farmacologia , Dexametasona , Seda/metabolismo , Orelha Interna/metabolismo , Perda Auditiva/tratamento farmacológico , Perda Auditiva/metabolismo , Fibroínas/farmacologia
2.
Biochem Pharmacol ; 222: 116115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460910

RESUMO

In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Modelos Animais de Doenças , Autofagia
3.
J Physiol ; 602(6): 1199-1210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431907

RESUMO

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Proteínas/genética
4.
Brain Behav ; 14(1): e3374, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376024

RESUMO

INTRODUCTION: Previous studies have reported that hearing loss (HL) is associated with dementia, although the mechanistic underpinnings remain elusive. This study aimed to evaluate the changes in brain metabolism in patients with HL and different types of dementia. METHODS: Patients with cognitive impairment (CI) and HL treated at the university-based memory clinic from May 2016 to October 2021 were included. In total, 108 patients with CI and HL prospectively underwent audiometry, neuropsychological test, magnetic resonance imaging, and 18 F-fluorodeoxyglucose positron emission tomography. Twenty-seven individuals without cognitive impairment and hearing loss were enrolled as a control group. Multivariable regression was performed to evaluate brain regions correlated with each pathology type after adjusting for confounding factors. RESULTS: Multivariable regression analyses revealed that Alzheimer's disease-related CI (ADCI) was associated with hypometabolic changes in the right superior temporal gyrus (STG), right middle temporal gyrus (MTG), and bilateral medial temporal lobe. Lewy body disease-related CI (LBDCI) and vascular CI were associated with hypermetabolic and hypometabolic changes in the ascending auditory pathway, respectively. In the pure ADCI group, the degree of HL was positively associated with abnormal increase of brain metabolism in the right MTG, whereas it was negatively associated with decreased brain metabolism in the right STG in the pure LBDCI group. CONCLUSION: Each dementia type is associated with distinct changes in brain metabolism in patients with HL.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Maleato de Dizocilpina/análogos & derivados , Perda Auditiva , Humanos , Fluordesoxiglucose F18/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/patologia , Perda Auditiva/complicações , Perda Auditiva/metabolismo , Perda Auditiva/patologia
5.
Proc Natl Acad Sci U S A ; 121(10): e2309656121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408254

RESUMO

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.


Assuntos
Surdez , Perda Auditiva , Camundongos , Animais , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas/fisiologia , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Caderinas/metabolismo , Éxons/genética
6.
J Pharm Pharmacol ; 76(4): 295-306, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206827

RESUMO

OBJECTIVES: Biochemical alterations due to diabetes development and progress are complex and diabetes-associated injury to various tissues has been well reported. Nevertheless, a close investigation of the literature demonstrates limited coverage regarding these biochemical and molecular alterations within the inner ear and their impact on the vestibulocochlear environment. A closer look at these may reveal pharmacological targets that could alleviate the severity of disease in patients. KEY FINDINGS: Tight control of glucose levels within the highly metabolic inner ear structures is crucial for their physiology and function. Impaired glucose homeostasis is well known to occur in vestibulocochlear malfunctioning. Moreover, the involvement of insulin signalling, and glucose transporters were recently confirmed in vestibulocochlear structures and are believed to play a crucial role in auditory and vestibular functions. CONCLUSION: Oxidative overload, glucolipotoxicity, perturbed blood rheology, endothelial dysfunction, compromised microvascular supply, and neurotoxicity are reported in many diabetic complications such as nephropathy, retinopathy, and diabetic neuropathy and are incriminated in the disruption of blood labyrinth barrier as well as vestibulocochlear neuritis. Dysfunctional insulin signalling was recently reported in the Organ of Corti. Insulin resistance in the inner ear niche warrants further studies to verify and uncover new pharmacological targets to manage this debilitating condition better.


Assuntos
Diabetes Mellitus , Orelha Interna , Perda Auditiva , Insulinas , Humanos , Orelha Interna/metabolismo , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Insulinas/metabolismo , Glucose/metabolismo
7.
Biochem Pharmacol ; 220: 115962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043717

RESUMO

Puerarin (PUE), a flavonoid derivative with vasodilatory effects found in the traditional Chinese medicine kudzu, has anti-sensorineural hearing loss properties. However, the mechanism of its protective effect against ototoxicity is not well understood. In this study, we used in vitro and in vivo methods to investigate the protective mechanism of puerarin against cisplatin (CDDP)-induced ototoxicity. We established an ototoxicity model of CDDP in BALB/c mice and assessed the degree of hearing loss and cochlear cell damage. We used bioinformatics analysis, molecular docking, histological analysis, and biochemical and molecular biology to detect the expression of relevant factors. Our results show that puerarin improved CDDP-induced hearing loss and reduced hair cell loss. It also blocked CDDP-induced activation of TRPV1 and inhibited activation of IP3R1 to prevent intracellular calcium overload. Additionally, puerarin blocked CDDP-stimulated p65 activation, reduced excessive ROS production, and alleviated cochlear cell apoptosis. Our study provides new evidence and potential targets for the protective effect of puerarin against drug-induced hearing loss. Puerarin ameliorates cisplatin-induced ototoxicity and blocks cellular apoptosis by inhibiting CDDP activated TRPV1/IP3R1/p65 pathway, blocking induction of calcium overload and excessive ROS expression.


Assuntos
Antineoplásicos , Perda Auditiva , Isoflavonas , Ototoxicidade , Animais , Camundongos , Antineoplásicos/efeitos adversos , Apoptose , Cálcio/metabolismo , Linhagem Celular , Cisplatino/efeitos adversos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Perda Auditiva/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/genética
8.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042485

RESUMO

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Assuntos
Actinas , Perda Auditiva , Miosina Tipo III , Animais , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chlorocebus aethiops , Células COS , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Miosinas/genética , Miosinas/metabolismo , Estereocílios , Humanos
9.
Tissue Eng Part B Rev ; 30(1): 15-28, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37440318

RESUMO

The incidence and prevalence of hearing loss is increasing globally at an accelerated pace. Hair cells represent the sensory receptors of auditory and vestibular systems. Hair cell absence, loss or degeneration due to congenital diseases, trauma, toxicity, infection or advancing age, results in disabling hearing loss. Regenerative medicine approaches consisting in stem cell-based hair cell rescue or regeneration, gene therapy, as well as cell and tissue engineering are expected to dramatically improve the therapeutic arsenal available for addressing hearing loss. Current strategies that are using different stem cell types to rescue or to induce hair cell proliferation and regeneration are presented. Gene and cell therapy methods that modulates transdifferentiation of surrounding cell types into hair cells are presented, together with their specific advantages and limitations. Several modalities for improving therapeutic targeting to the inner ear such as nanoparticle-mediated cell and gene delivery are introduced. Further steps in building more relevant high-throughput models for testing novel drugs and advanced therapies are proposed as a modality to accelerate translation to clinical settings.


Assuntos
Surdez , Perda Auditiva , Humanos , Regeneração , Perda Auditiva/terapia , Perda Auditiva/metabolismo , Surdez/metabolismo , Surdez/terapia , Células Ciliadas Auditivas/metabolismo , Células-Tronco
10.
Dev Cell ; 59(2): 280-291.e5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38128539

RESUMO

Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Transdução de Sinais/fisiologia , Galinhas/metabolismo , Perda Auditiva/metabolismo , Receptores ErbB/metabolismo , Mamíferos/metabolismo
11.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139347

RESUMO

Cholesterol is a risk factor for age-related hearing loss (ARHL). However, the effect of cholesterol on the organ of Corti during the onset of ARHL is unclear. We established a mouse model for the ARHL group (24 months, n = 12) and a young group (6 months, n = 12). Auditory thresholds were measured in both groups using auditory brainstem response (ABR) at frequencies of 8, 16, and 32 kHz. Subsequently, mice were sacrificed and subjected to histological analyses, including transmission electron microscopy (TEM), H&E, Sudan Black B (SBB), and Filipin staining, as well as biochemical assays such as IHC, enzymatic analysis, and immunoblotting. Additionally, mRNA extracted from both young and aged cochlea underwent RNA sequencing. To identify the mechanism, in vitro studies utilizing HEI-OC1 cells were also performed. RNA sequencing showed a positive correlation with increased expression of genes related to metabolic diseases, cholesterol homeostasis, and target of rapamycin complex 1 (mTORC1) signaling in the ARHL group as compared to the younger group. In addition, ARHL tissues exhibited increased cholesterol and lipofuscin aggregates in the organ of Corti, lateral walls, and spiral ganglion neurons. Autophagic flux was inhibited by the accumulation of damaged lysosomes and autolysosomes. Subsequently, we observed a decrease in the level of transcription factor EB (TFEB) protein, which regulates lysosomal biosynthesis and autophagy, together with increased mTORC1 activity in ARHL tissues. These changes in TFEB and mTORC1 expression were observed in a cholesterol-dependent manner. Treatment of ARHL mice with atorvastatin, a cholesterol synthesis inhibitor, delayed hearing loss by reducing the cholesterol level and maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB. The above findings were confirmed using stress-induced premature senescent House Ear Institute organ of Corti 1 (HEI-OC1) cells. The findings implicate cholesterol in the pathogenesis of ARHL. We propose that atorvastatin could prevent ARHL by maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB during the aging process.


Assuntos
Autofagia , Perda Auditiva , Lisossomos , Animais , Camundongos , Atorvastatina/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Colesterol/metabolismo , Perda Auditiva/metabolismo
12.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139332

RESUMO

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Assuntos
Endopeptidase Clp , Perda Auditiva , Mitocôndrias , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiração/genética , Biossíntese de Proteínas/genética
13.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943620

RESUMO

Transmembrane and tetratricopeptide repeat 4 (Tmtc4) is a deafness gene in mice. Tmtc4-KO mice have rapidly progressive postnatal hearing loss due to overactivation of the unfolded protein response (UPR); however, the cellular basis and human relevance of Tmtc4-associated hearing loss in the cochlea was not heretofore appreciated. We created a hair cell-specific conditional KO mouse that phenocopies the constitutive KO with postnatal onset deafness, demonstrating that Tmtc4 is a hair cell-specific deafness gene. Furthermore, we identified a human family in which Tmtc4 variants segregate with adult-onset progressive hearing loss. Lymphoblastoid cells derived from multiple affected and unaffected family members, as well as human embryonic kidney cells engineered to harbor each of the variants, demonstrated that the human Tmtc4 variants confer hypersensitivity of the UPR toward apoptosis. These findings provide evidence that TMTC4 is a deafness gene in humans and further implicate the UPR in progressive hearing loss.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Cóclea/metabolismo , Surdez/genética , Cabelo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo
14.
Sci Rep ; 13(1): 18417, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891242

RESUMO

Previous studies indicate changes in neurotransmission along the auditory pathway in subjective tinnitus. Most authors, however, investigated brain regions including the primary auditory cortex, whose physiology can be affected by concurrent hearing deficits. In the present MR spectroscopy study we assumed increased levels of glutamate and glutamine (Glx), and other Central Nervous System metabolites in the temporal lobe outside the primary auditory cortex, in a region involved in conscious auditory perception and memory. We studied 52 participants with unilateral (n = 24) and bilateral (n = 28) tinnitus, and a control group without tinnitus (n = 25), all with no severe hearing losses and a similar hearing profile. None of the metabolite levels in the temporal regions of interest were found related to tinnitus status or laterality. Unexpectedly, we found a tendency of increased concentration of Glx in the control left medial frontal region in bilateral vs unilateral tinnitus. Slightly elevated depressive and anxiety symptoms were also shown in participants with tinnitus, as compared to healthy individuals, with the bilateral tinnitus group marginally more affected. We discuss no apparent effect in the temporal lobes, as well as the role of frontal brain areas, with respect to hearing loss, attention and psychological well-being in chronic tinnitus. We furthermore elaborate on the design-related and technical obstacles of MR spectroscopy.


Assuntos
Córtex Auditivo , Perda Auditiva , Zumbido , Humanos , Zumbido/diagnóstico , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/metabolismo , Audição , Espectroscopia de Ressonância Magnética , Perda Auditiva/metabolismo
15.
EMBO Mol Med ; 15(11): e17611, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37691516

RESUMO

Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Proteínas do Citoesqueleto , Surdez/genética , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo
16.
Environ Sci Pollut Res Int ; 30(47): 104464-104476, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700133

RESUMO

The issue of hearing protection in the presence of noise pollution is of great importance in the fields of environmental science and clinical medicine. Currently, the clinical significance of Klotho in relation to hearing has not been revealed. The aim of this study was to examine the correlation between serum Klotho levels and Pure Tone Average (PTA) hearing thresholds among individuals in the U.S.. The analysis involved a sample of 1,781 individuals aged 20 to 69, obtained from the 2007-2012 National Health and Nutrition Examination Survey. Various methods were utilized for the analysis, including univariate and multivariate linear regression, stratified analysis, smooth curve fitting, a two-segment linear regression model, and log-likelihood ratio analysis. The results of the univariate analysis indicated that serum Klotho concentration, age, education level, hypertension, diabetes, and smoking all exhibited a significant influence on PTAs. After adjusting for potential confounding factors, it was observed that a decrease in serum Klotho was significantly associated with PTA thresholds at low frequency (ß = -0.002; 95% CI: -0.003, -0.001; P = 0.004), speech frequency (ß = -0.002; 95% CI: -0.003, -0.001; P = 0.007), and high frequency (ß = -0.002; 95% CI: -0.003, -0.001; P = 0.045). Specifically, for every 1 pg/ml decrease in serum Klotho concentration, the PTAs increased by 0.002 dB. Moreover, age and gender-specific analyses revealed significant associations. For individuals aged 59-69, a significant association was found between serum Klotho concentration and high-frequency PTA (ß = -4.153; 95% CI: -7.948, -0.358; P = 0.032). Additionally, among females, significant associations were observed between serum Klotho concentration and speech-frequency PTA (ß = -1.648, 95% CI: -3.197, -0.099; P = 0.037) as well as high-frequency PTA (ß = -3.046; 95% CI: -5.319, -0.772; P = 0.009). Finally, the results of smooth curve fitting and threshold effect analyses indicated a potential negative linear correlation between serum Klotho concentration and PTA thresholds. In conclusion, a lower level of serum Klotho was found to be associated with increased hearing thresholds, particularly among the elderly population. This finding has significant implications for the prevention and treatment of hearing damage.


Assuntos
Perda Auditiva , Proteínas Klotho , Idoso , Feminino , Humanos , Audiometria de Tons Puros/métodos , Perda Auditiva/diagnóstico , Perda Auditiva/metabolismo , Hipertensão , Ruído/efeitos adversos , Inquéritos Nutricionais , Proteínas Klotho/sangue , Proteínas Klotho/química , Biomarcadores
17.
Sci Rep ; 13(1): 12584, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537203

RESUMO

POU4F3, a member of the POU family of transcription factors, commonly causes autosomal dominant deafness. Exome sequencing was used to identify four novel variants in POU4F3 (NM_002700.2), including c.564dupA: p.Ala189SerfsTer26, c.743T > C:p.Leu248Pro, c.879C > A:p.Phe293Leu, and c.952G > A:p.Val318Met, and diverse aspects of the molecular consequences of their protein expression, stability, subcellular localization, and transcriptional activity were investigated. The expression of three mutant proteins, encoded by missense variants, was reduced compared to the wild-type protein, demonstrating that the mutants were unstable and vulnerable to degradation. Additionally, all the mutant proteins had distinct subcellular localization patterns. A mutant protein carrying p.Ala189SerfsTer26, in which both mono- and bi-partite nuclear localization signals were disrupted, showed abnormal subcellular localization. Resultantly, all the mutant proteins significantly reduced the transcriptional activity required to regulate the downstream target gene expression. Furthermore, we identified the altered expression of 14 downstream target genes associated with inner ear development using patient-derived lymphoblastoid cell lines. There was a significant correlation of the expression profile between patient-derived cells and the cochlear hair cells, which provided a breakthrough for cases where the collection of human cochlear samples for transcriptome studies was unfeasible. This study expanded the genotypic spectrum of POU4F3 in DFNA15, and further refined the molecular mechanisms underlying POU4F3-associated DFNA15.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Proteínas de Homeodomínio/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição Brn-3C/genética , Linhagem
18.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373495

RESUMO

The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.


Assuntos
Surdez , Perda Auditiva , Recém-Nascido , Humanos , Conexina 26/metabolismo , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/metabolismo , Perda Auditiva/metabolismo , Junções Comunicantes/metabolismo , Mutação
19.
FEBS Open Bio ; 13(7): 1365-1374, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37258461

RESUMO

Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.


Assuntos
Cóclea , Perda Auditiva , Animais , Camundongos , Cóclea/metabolismo , Cóclea/patologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo
20.
Stem Cell Res Ther ; 14(1): 83, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046329

RESUMO

Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.


Assuntos
Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Transplante Heterólogo , Diferenciação Celular , Perda Auditiva/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...